MATH 2110: Applied Calculus - 4 Semester Credit Hours
Close All | Open AllA Applied Calculus: Course Identification
1
Introductory Video
2
Different Names for Applied Calculus
- Applied Calculus
- Business Calculus
- Survey of Calculus
- Liberal Arts Calculus
- Calculus for Management or Social Science or ...
- Calculus for Biology
3 Lower Applied Calculus vs. Higher Engineering Calculus I
Applied Calculus provides a lighter, more general introduction to the introductory topics of Calculus, while the higher Calculus I course expects students to have strong fundamentals in the concepts of limits, derivatives, and integrals, and applications of these concepts to more difficult and challenging problem sets, in preparation for continuation to the higher Calculus II course in the first year Calculus sequence. Applied Calculus is "a notch or two easier" than the Engineering Calculus I course
Applied Calculus does not include nor require trigonometry. High School Algebra II is sufficient prerequisite for Applied Calculus, while the higher Calculus I course requires College Algebra, Trigonometry, and/or Precalculus.
The main topical differences between the lower Applied Calculus and the higher (Engineering) Calculus I course are described in the table below.
Topic | Applied Calculus | Calculus I |
---|---|---|
Trigonometry | No | Yes |
Analytical Geometry | No | Conic Sections, Parametric Functions |
Functions | Polynomials, Roots, Exponential, Logarithmic | Polynomials, Roots, Exponential, Logarithmic, Trigonometric, Composite, Integral Functions |
Limits | Mainly Graphical, Numerical | Algebraic, Graphical, Numerical |
Derivatives | Simple Algebraic Rules | Rigorous Rule Development, Application |
Applications | Economics, Finance, Easier | Physics, Economics, Rates, Challenging |
Introduction to Differential Equations | No | Yes |
Derivatives and Integrals of Parametric Curves/Functions | No | Yes |
Displacement, Velocity, Acceleration | Minimal | Yes |
Integration | Basic Integration Rules | Algebraic Integration, Integral Functions, Integration via Substitution, Preparation for Calculus II |
The Applied Calculus course does include more applications to business, finance, economics, etc. than does the Engineering Calculus course.
4 Will Applied Calculus Suffice For Your Program?
Academic programs that usually will accept the lower Applied Calculus course include:
- MBA & Business Schools
- Pharmacy, Nursing, or Pre-Med Schools
- Architecture
- Baccelaureate General Education Requirements
- Other Graduate School Programs
- Primary/Secondary Education Teacher Certification
Academic programs that usually require the higher (Engineering) Calculus I course include:
- Science Majors
- Economics Majors/Degrees
- Special Military Training
Transferring Credits vs. Satisfying Program Prerequisites
Many of our Applied Calculus students are seeking to satisfy the prerequisites for a graduate program of study, which is distinctly different than planning to transfer academic credits to a home institution. Some of the differences include:
- Prerequisite Satisfaction: Minimal Grade
Students using the Applied Calculus course to satisfy a prerequisite in another academic program will be required to achieve a minimal grade. For some programs the minimal required grade is a "B", and for others a "C" grade will suffice. - Prerequisite Satisfaction: Course Approval
For Prerequisite Satisfaction, often only the graduate program (usually an admissions officer) must give approval for usage of the Distance Calculus course. For transferring of academic credits, often others, such as the Registrar, must also give approval to transferring credits. - Transferring Credits: Grades May or May Not Transfer
When Transferring Credits, many institutions will accept the academic credits in transfer, but not the letter grade earned. In these cases, earning an "A" in the course is no different than earning a "B" or a "C". Often this type of situation gives the student guidance on which Grade Path to choose for Distance Calculus.
In either case, it is important to check with your graduate program to make sure the Applied Calculus course will satisfy their prerequisite requirements, and to make sure the Distance Calculus course is acceptable to them.
5 Course Content & Syllabus
- Intensive Algebra Refresher
- Introduction to Differential Calculus
- Introduction to Integral Calculus
Course Catalog Listing
Course Description: An introduction to differential and integral calculus emphasizing applications to business and the life sciences. Topics covered will include limits, rules of differentiation, extreme value problems, curve sketching, exponential and logarithmic functions, techniques of integration, and area between curves. Includes a thorough review of high school algebra.
Prerequisite: Algebra II
Detailed Course Syllabus in PDF
6 Applied Calculus - Academic Caveats
- Terminal Course
- No Trigonometry
- No Multivariable Calculus
B Typical Students in Applied Calculus
7 Student Academic Goals
- Prepare for MBA or Other Graduate Program
- Pharmacy, Nursing, Pre-Med
- General Education Requirement
- Teacher Re-Certification
8 Example Student Profiles
Case 1: MBA-Bound Student Needs Applied Calculus
Sally just got her acceptance letter from her MBA graduate school, but with notification that she needs to finish "a single collegiate-level differential and integral calculus course" by the start of MBA courses.How fast can Sally finish the MAT 2110 - Applied Calculus course?
MBA students tend to be highly-motivated and deadline-centered students, ready to "do what it takes" to get finished by the required date. Here are some scenarios for Sally:
Common Completion Timelines for MAT 2110 - Applied Calculus | ||||
Hours Dedicated | Math Skills | Dedication | Completion Time | Advisory |
---|---|---|---|---|
5-10 hours/week | Weaker | 1-2 hours/day | 16 weeks | Reasonable |
7-12 hours/week | Modest | 2-3 hours/day | 12 weeks | Reasonable |
10-15 hours/week | Stronger | 3-4 hours/day | 8 weeks | Reasonable |
15-20 hours/week | Strong | 5-6 hours/day | 6 weeks | Stretched |
20-25 hours/week | Strong | 5-7 hours/day | 4 weeks | Stretched |
20-25 hours/week | Strong | 6-8 hours/day | 3 weeks | Unreasonable, But Has Been Done |
30-40 hours/week | Very Strong | 8-10 hours/day | 2 weeks | Unreasonable, But Has Been Done |
40-50 hours/week | Very Strong | 10-12 hours/day | 9 days | World's Record |
Case 2: Pharmacy Student Needs Applied Calculus
Marc is planning to go to Pharmacy School in a few months, and needs to finish the Applied Calculus course prior to the start of school. Marc has been away from academic mathematics for many years, and does not have a strong mathematics background, but makes up for such weaknesses with drive, energy, and dedication to achieving his goals.How fast can Marc finish the MAT 2110 - Applied Calculus course?
Marc will need to plan for extra time, especially at the beginning of the course, to get back into the swing of academic mathematics. The high school algebra review portion of the course (20 assignments) will be time well spent for Marc, as he revisits topics from high school that previously he did not have much success with. Marc is able to dedicate himself to the task, and is able to move more quickly through the Calculus curriculum (50 assignments). Here are some scenarios for Marc:
Common Completion Timelines for MAT 2110 - Applied Calculus | ||||
Hours Dedicated | Math Skills | Dedication | Completion Time | Advisory |
---|---|---|---|---|
8-10 hours/week | Weaker | 1-2 hours/day | 15 weeks | Reasonable |
15-20 hours/week | Weaker | 2-3 hours/day | 10 weeks | Reasonable |
20-25 hours/week | Weaker | 3-4 hours/day | 8 weeks | Reasonable |
20-25 hours/week | Modest | 2-3 hours/day | 8 weeks | Reasonable |
25-30 hours/week | Modest | 4-5 hours/day | 6 weeks | Stretched |
30-35 hours/week | Modest | 5-6 hours/day | 4 weeks | Stretched |
Case 3: Working Parent Planning for Graduate Studies Needs Applied Calculus
Amelia is a parent of three children who also works full-time. Amelia has ambitious plans to return to graduate school in the next year to advance her career. Amelia cannot take a traditional classroom math course due to her schedule constraints.How fast can Amelia finish the MAT 2110 - Applied Calculus course?
We have many students like Amelia who are quite successful in Distance Calculus!
Amelia will probably do her math homework after her kids are asleep for the night, in the 10pm-midnight timeframe. The Mastery Learning format for Distance Calculus serves Amelia well, where she is able to spend extra time on those topics that are more challenging for her, without penalty or "falling behind" as she would in a traditional course.
When the children get sick and stay home from school, or life and work commands extra time, Amelia is able to take a break from Distance Calculus - usually for a few weeks, but perhaps for a few months, if needed - and return to her studies when her schedule permits. While such breaks do cause slower completion times, and "getting back in the swing of things" does require extra time and effort for Amelia, the flexibility of the asynchronous course format allows Amelia to finish the course when she can.
Case 4: 18-22 Year Old Student With Full Course Load Needs To Finish Applied Calculus
James is an undergraduate student at a university, carrying 15 semester credits - a full course load. James wants to add the Applied Calculus course to his course schedule, in order to complete a general education requirement.What are the challenges that James will face with this plan?
In our experience, when a student is faced with "too many courses" at the same time, it is the asynchronous distance course that almost always is the course to suffer a lack of attention. With other synchronous course deadlines and examinations, it is natural that an asynchronous course such as Distance Calculus becomes the "pressure valve".
Students in these situations nearly always finish their Distance Calculus course during the winter break (December, January), spring vacation (April), and/or the summer vacation months (May-August). Even with the best of intensions, it is very difficult to complete a Distance Calculus course while taking 4 or 5 other courses simultaneously.
Younger students also have more difficulty with the flexible schedule of Distance Calculus. It is very easy to put off your course work "until all day Saturday" or "next week after my Philosophy exam", which snowballs into a huge amount of work leftover to an increasingly short amount of time. Planning for vacation times is the best approach for students in this category.
9 Referenced Colleges/Universities
Below is a list of schools (most recently, from just 2010-2013) that Distance Calculus students have utilized their Applied Calculus course credits earned towards these programs:
- University of Pennsylvania, Wharton School of Business
- London School of Economics
- Harvard University: Kennedy School of Government, Medical Schools
- Duke University, Fuqua School of Business, Law School, Graduate Programs
- Columbia University School of Business
- University of Pennsylvania Architectural School
- University of Michigan: MBA, Medical Schools, Graduate Programs
- Stanford University, MBA
- University of California, Berkeley
- Auburn University MBA Program
- University of North Carolina, MBA
- George Washington University School of Business
- Roger Williams University
- University of Minnesota, School of Public Health
- Montclair University
- Baylor University
- Eastern Illinois University
- University of Minnesota, Twin Cities
- University of Memphis
- State University at Buffalo, Law School
- Westminster College
- University of Mississippi
- Georgia Tech
Our Applied Calculus students also come from, or are currently enrolled in, schools that include these:
- Wharton School of Business, University of Pennsylvania
- Harvard University, Kennedy School of Government
- Duke University - Fuqua School of Business
- Stanford University
- Princeton University
- University of California, Berkeley
- University of California, Santa Barbara
- University of Southern California
- Pennsylvania State University
- College of William & Mary
- University of Texas at Austin
- Drexel University
- University of Massachusetts
- Cornell University
- University of Wisconsin, Madison
- Carnegie Mellon University
- University of North Carolina, Chapel Hill
- Kings College, University of London
- Indiana University
- Rice University
- University of Georgia
- University of South Carolina
- University of Minnesota-Twin Cities
- Baylor University
- Loma Linda University
- University of Maryland
- Georgetown University
- University of West Florida
- Eastern Illinois University
- University of Virginia
- University of Maryland
- University of Nebraska
- University of Missouri
- University of Georgia
- Florida Atlantic University
- Washington State University
- University of New Orleans
- California State University, Sacramento
- California State University, Dominguez Hills
- Babson College
- Wheaton College
- Middlebury College
- George Washington University
- Roger Williams University
- Texas A&M University
- Oregon State University
- Illinois Institute of Technology
- Montclair University
- Hillsdale University
- Evangel University
- The Art Institute of Atlanta
- New Mexico Military Institute
- Athens State University
- American Graduate University
- Kaplan University
- University of Warwick
- Gordon College
- University of Memphis
- Endicott College
- University Of Mount Union
- Mesa State College
- Azusa Pacific University
- Thomas Edison State College
- State University at Buffalo Law School
- Murray State University
- University of Phoenix
- Webster University
- Northern Michigan University
- Western Michigan University
- Central Michigan University
- Fairleigh Dickenson University
- Whitman College
- Fairifield University
- Jacksonville State University
- University of Redlands
- Westminster College
- University of San Francisco
- Strayer University
- Vanderbilt University
- Howard University
- Middlebury College
- Valdosta State University
- American University
- Clarkson University
- Howard University
- Green Mountain College
- Whittier College
- Florida A & M University
- James Madison University
- Franklin University
- Woodbury University
- Quinnipiac University
- Webster University
- Western Michigan University
C Applied Calculus: Academics
10 80% Computer Algebra, 20% Pencil/Paper, 0% Multiple Choice
Although the driving of a computer algebra system requires some up-front time to learn and master, once completed (rather quickly for most students), the time saved from having to be a "minus sign accountant" adds to the productivity of your study time. If you have ever spent hours looking for that "little numerical error", you know what we mean.
Command of a computer algebra software system is a modern-day necessity of mathematical academics. It is important, however, to retain a meaningful command of paper/pen/pencil manual computations as well. Our blend of curriculum strives for an 80%/20% split between computer algebra usage and manual computation and written skills. With each module in our curriculum, a concluding Literacy Sheet assignment ensures that each student has written mathematical competency in the subject area.
The proctored final exam is a written exam away from the computer. It is these Literacy Sheet assignments, and the continuing bridge from modern computer algebra software back to classical, manual mathematics that prepares the student from this written final exam.
We do not have any multiple-choice work. We are a real collegiate-level course program - not a "canned" set of multiple-choice question sheets which are common from large publishers and degree-mill schools.
11 Example Curriculum
Videotext - A Modern Replacement of the Textbook
What is a videotext? It is like a textbook, except instead of being based upon printed information, this "text" is based upon video presentations as the core method of explaining the course topics. Instead of a huge, thick 1000-page Calculus textbook to lug around in your backpack, all of this new "videotext" can be loaded into your iPods or iPhones (and soon, the iPad!).Example Videos are in MP4/H.264 format, which play in most modern browsers without additional software. When additional software is required, a backup Flash player will play the video. As a backup to Flash, you may also use iTunes and/or VLC.
Our videotext features two main types of videos:
- Screencast Videos using LiveMath™ Play Video
Although we are anywhere from a few miles to a few thousand miles apart, watching these screencast videos is like sitting next to the course instructor, watching his computer, learning the topics of Calculus at the same time as learning how to drive the computer algebra and graphing software LiveMath™. These LiveMath™ screencast videos make up the majority of the video presentations in the videotext.
- ChalkTalk Videos: Manual Calculations Play Video
While using a computer algebra software package is a very cool way to do Calculus computations and investigations, we must also pay attention to the classical side of Calculus, and the computations that can be completed by hand with paper/pen/pencil. To be a well-rounded Calculus student, you need to be able to do calculations in both technical and manual methods.
12 Screencast Video Questions
If a picture is worth a thousand words, then a screencast movie is worth a million words - and saves boatloads of time and effort.
Instead of trying to type out a math question about a particular topic or homework question, the ease of "turning on the screen recorder" and talking and showing your question - in the span of a few minutes - can save hours of time trying to convert your question into a typed (and coherent) narrative question.
Example Instructor Question/Answer Movie
When a student asks a question in a homework notebook, sometimes the best way to explain the answer is via a screen movie.
- Instructor Question/Answer Movie Play Video
- Instructor Question/Answer Movie Play Video
- Instructor Question/Answer Movie Play Video
- Instructor Question/Answer Movie Play Video
- Instructor Question/Answer Movie Play Video
- Instructor Question/Answer Movie Play Video
13 Example Student Work and Grading
The student will "Hand-In" a notebook, and one of the instructors will grade, correct, give feedback, and/or give hints on the work in the notebook, and return the notebook to the student in his/her "GetBack" folder, where the student will view the instructor comments.
Sometimes the notebook is deemed "Complete" on the first revision. Sometimes the notebook must go back and forth between the student and instructor a number of times - 2, 3, 4, 5 times is rather common.
Coupled with the screencast video mechanism, sometimes the instructor or the student will submit a screen movie with the notebook, giving further explanation or questions in audio/video format.
Below are some example notebooks from actual students, showing the progression from starting notebook to completed notebook.
- LiveMath™ Homework Notebook #1 PDF Printout
View PDF #1
View PDF #2
View PDF #3 - LiveMath™ Homework Notebook #2 PDF Printout View PDF
- LiveMath™ Homework Notebook #3 PDF Printout View PDF
- LiveMath™ Homework Notebook #4 PDF Printout View PDF